ATOMS AND MOLECULES

History

- Democritus (460-370 BC): Atoms are indivisible particles .
- Plato and Aristotle challenged this view believing that matter was continuous.
- Newton (1642-1727 AD) proposed the idea of invisible particles in the air called atoms.
- Antoine Lavoisier (1743-1794 AD) conducted experiments demonstrating mass of products = mass of reactants
- John Dalton (1766-1844 AD) proposed a model of matter as Dalton's Atomic Theory.

Dalton's Atomic Theory

Postulates are:

i) Matter is made up of tiny particles called atoms.
ii) Atoms are indivisible and cannot be created or destroyed in a chemical reaction iii) Atoms of a given element are similar in mass and properties. iv) Atoms of different elements have different masses and properties.
v) Atoms combine in small whole number ratios to form compounds.
vi) In a given compound the relative number and kind of atoms are constant.

Father of Modern Chemistry

Antoine L. Lavoisier

- Lavoisier was a French alchemist central to the 18th-century Chemical Revolution.
- He worked in both chemistry and biology.
- He laid the foundation of modern day chemical sciences by establishing two important laws of chemical combination.

Laws of Chemical Combination

"Laws of chemical combination are laws followed by different chemical reactions."
There are two basic laws of chemical combination.

- Law of Conservation of Mass.
- Law of Constant Proportions.

Law of Conservation of Mass

- The law of conservation of mass states that,
"Mass can neither be created nor destroyed in a chemical reaction".
- The law is applicable to chemical reactions only and excludes nuclear and other such reactions.
- This means that during a chemical reaction the sum of the masses of the reactants and products remain unchanged.

Activity:

' Take some sodium sulphate solution in a conical flask and some barium chloride solution in an ignition tube.
' Hang the ignition tube in the flask by a thread and pot a cork on the flask. Find the mass of the flask on a balance.
' Then tilt the flask. A chemical reaction takes place and sodium chloride and barium sulphate are formed.

- Then find the mass of the flask again. Ft will be seen that thillen sum of the masses of the reactaints and products remaimpqunchanged.
solution

Law of Conservation of Mass

e.g. Reactant DProduct
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \mathbf{N H}_{2} \mathrm{O}$
$49 \quad 32 \mathrm{36g}$
$3 \mathbf{H}_{2}+\mathbf{N}_{2} \boldsymbol{N 2 N H}_{3}$
$6 g \quad 28 g \quad 349$
$\mathrm{C}+\mathrm{O}_{2} \mathrm{DCO}_{2}$
12 g 3 g g

Law of Constant Proportion

- Law of Constant Proportion states that "A chemical compound always contains exactly the same proportion of elements by mass."
- This law is also known as Law of definite proportions.
- Joseph Louis Proust gave this law hence, this law is also known as Proust's Law.

Law of Constant Proportion

For example:

* In a molecule of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ the ration of mass of H\&O will be (2×1) : (1×16) OR 1:8, given that masses of H\&O $1 \mathrm{u} \& 16 \mathrm{u}$ respectively.
In a molecule of Ammonia $\left(\mathrm{NH}_{3}\right)$ the ratio of mass of $H \& N$ will be (3×1) : (1×14) OR 3:14, given that masses of $H \& N(1 u \& 14 u$ respectively.
* In a molecule of Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ the ratio of mass of C \& O will be (1 x 12): (2×16) OR $3: 8$, given that masses of C\&O12u \& 16u respectively.

Numerical Problem (Finding mass of other reactant)

Q. 3 g of carbon react with 8 g of carbon toproduce CO_{2}. Calculate the amount of oxygen required to react with 4.5 g of carbon.
Ans: $\quad \mathrm{C}+\mathrm{O}_{2} \quad \mathrm{CO}_{2}$
By law: $\mathbf{3 g} \quad \mathbf{8 g}$
Given $\quad 4.5 \mathrm{~g} \quad \mathrm{x}$
By law of fixed proportion $\quad \underline{\mathbf{g}}=\underline{8 g}$

$$
\begin{aligned}
& 4.5 \mathrm{~g} \quad \mathrm{xg} \\
& \mathrm{x}=(8 \times 4.5) / 3 \quad=12 \mathrm{~g} \\
& \text { Amount of Oxygen required }=12 \mathrm{~g}
\end{aligned}
$$

Numerical Problem (Finding mass of product)

Q. 3 g of hydrogen react with 14 g of nitrogen to produce ammonia $\left(\mathrm{NH}_{3}\right)$. Calculate the amount of ammonia produce when 7.5 g of hydrogen react with 21 g of nitrogen.
Ans: $\mathrm{H}_{2}+\mathrm{N}_{2} \quad \mathrm{NH}_{3}$
By law: 3g 14g 17g
Given 7.5 g 21g xg
Calculate H / N ratio for given amount i.e. 7.5/21 = 5/14 Ratio indicate that H_{2} is present in excess thus will remain unreacted and N_{2} will be completely consumed in the reaction. Thus N_{2} will limit the amount of product and should be used for calculating it.

Numerical Problem (Finding mass of product)

$\mathrm{H}_{2}+\mathrm{N}_{2} \quad \mathrm{NH}_{3}$

By law: $\quad 14 \mathrm{~g} \quad 17 \mathrm{~g}$
Given
21g xg
By law of fixed proportion $\quad 14 \mathrm{~g}=17 \mathrm{~g}$

$$
\begin{array}{rl}
21 \mathrm{~g} & x g \\
x=(17 \times 21) / 14 & =25.5 \mathrm{~g}
\end{array}
$$

Amount of NH_{3} produced $=\mathbf{2 5 . 5 g}$

John Dalton

- John Dalton was an English chemist, meteor olo-gist and physicist.
- He is best known for his pioneering work in the development of modern atomic theory.
- He also worked oncolour blindness.
- He received Noble Prize for Daltons atomic theory in 1902.

Main points of Dalton's atomic theory.

- Elements are made of extremely small particles called atoms.
- Atoms of a given element are identical in size, mass, and other properties;
- Atoms of different elements differ in size, mass, and other properties.
- Atoms cannot be subdivided, created, or destroyed.
"This postulate is a result of law of conservation of mass."
- Atoms of different elements combine in simple wholenumber ratio by mass to form chemical compounds. "This postulate is a result of law of fixed proportion."
- In chemical reactions, atoms are combined, separated,
or rearranged.

What is an Atom?

- Atom can be defined as the smallest particle of matter that takes part in a chemical reaction.

$$
\begin{gathered}
\text { How big are } \\
\text { Atoms?????????? }
\end{gathered}
$$

Atoms are very small, they are smaller than anything that we can imagine or compare with.

Characteristics of Atom

- Atom is the smallest particle of matter.
- All elements are made of tiny particles called atom.
- Atoms are very small and cannot be seen through naked eyes.
- Atoms generally do not exist in free-state in nature.
- Atom is the chemical $\&$ material unit that takes part in a chemical reaction.
- The properties of a matter depend upon the characteristics of atoms.
- Dalton considered atom as indivisible.

Dalton's Symbols

- By Dalton and earlier alchemist pictographic symbols were used to symbolize elements known since ancient times.
- Many symbols for compounds was also used at that times.
Oxygen

Symbols for Different Elements

- Modern alphabetic notation was introduced in 1814 by Jöns Jakob Berzelius.
- In this notation the first letter of English (sometimes Greek or Latin) name of element followed by second or any following alphabet is used as symbol.
- The first letter is mandatory and is always written in UPPERCASE.
- Letters following it are added if required and are always written in lowercase.
- Symbols for few elements are given in next slide.

Symbols for Different Elements

Actinium	Ac	Hafnium	Hi	Praseodymium	Pr
- Aluminum	Al	- Helium	He	Promethium	Pm
Americium	Am	Holmium	Ho	Protactinium	Pa
Antimony	Sb	- Hydrogen	H	Radium	Ra
- Argon	Ar	Indium	In	Radon	Rn
Arsenic	As	- lodine	1	Rhenium	Re
Astatine	At	Iridium	Ir	Rhodium	Rh
- Barium	Ba	- Iron	Fe	-Rubidium	Rb
Berkelium	Bk	Krypton	Kr	Ruthenium	Ru
* Beryllium	Be	Lanthanum	La	Samarium	Sm
- Bismuth	Bi	Lawrencium	Lr	Scandium	Sc
- Boron	B	-Lead	Pb	Selenium	Se
- Bromine	Br	- Lithium	Li	- Silicon	Si
${ }^{\text {- }}$ Cadmium	Cd	Lutetium	Lu	- Silver	Ag
- Calcium	Ca	- Magnesium	Mg	- Sodium	Na
Californium	Cl	- Manganese	Mn	- Strontium	Sr
- Carbon	C	Mendelevium	Md	- Sulfur	S
Cerium	Ce	- Mercury	Hg	Tantalum	Ta
- Cesium	Cs	- Molybdenum	Mo	Technetium	Tc
- Chlorine	Cl	Neodymium	Nd	Tellurium	Te
- Chromium	Cr	- Neon	Ne	Terbium	Tb
- Cobalt	Co	Neptunium	Np	- Thallium	TI
- Copper	Cu	- Nickel	Ni	Thorium	Th
Curium	Cm	Niobium	Nb	Thulium	Tm
Dysprosium	Dy	- Nitrogen	N	- Tin	Sn
Einsteinium	Es	Nobellum	No	Titanium	Ti
Erbium	Er	Osmium	Os	Tungsten	W
Europium	Eu	- Oxygen	0	Uranium	U
Fermium	Fm	Palladium	Pd	Vanadium	V
- Fluorine	F	*Phosphorus	P	Xenon	Xe
Francium	Fr	- Platinum	Pt	Ytterbium	Yb
Gadolinium	Gd	Plutonium	Pu	Yttrium	Y
Gallium	Ga	Polonlum	Po	- Zinc	Zn
Germanium	Ge	- Potassium	K	Zirconium	Zr
Gold	Au				

Symbols for Different Elements

- Some elements like sodium, potassium, mercury and others get their symbols from latin name due to assure easy tranom Name \quad Symbol \quad Latin Name

antimony	Sb	stibnum
copper	Cu	cuprum
gold	Au	aurum
iron	Fe	ferrum
lead	Pb	plumbum
mercury	Hg	hydragyrum
potassium	\boldsymbol{K}	kalium
silver	Ag	argentum
sodium	Na	natrium
tin	Sn	stannum

- Tungsten get symbol 'W' from German name 'Wolfram' as a political compromise between European countries.

Atomic Mass

- Mass of atom is called atomic mass.
- Mass of an atom is very small e.g. the actual mass of one atom of hydrogen is equal to $1.673 \times 10^{-24} \mathrm{~g}$ OR 0.000000000000000000000001673 gram.
- Thus for convenience relative atomic mass is used.
- In earlier times oxygen (relative atomic mass = 16) was used as standard for calculating atomic masses. This was due to following reasons:
- It form oxides with maximum elements which were used to calculate the atomic mass of an element.
- The relative mass of maximum other elements was obtained in whole number.

Atomic Mass

- Later oxygen was replaced by carbon as standard for relative atomic mass.
- The mass of one carbon atom is taken as 12 u where u is unified atomic mass unit.
- Thus 1 u is equal to $1 / 12$ of the mass of a carbon atom. "Atomic mass of an element from a specified source is the ratio of the average mass per atom of the element to 1/12 of the mass of an atom of ${ }^{12} \mathrm{C}$."
- For a molecule, molecular mass is used which is the sum of masses of all the atoms present in a molecule.
- For ionic compounds relative molecular mass is calculated on basis of chemical formula.

Molecular Mass

"Molecular mass can be defined as the sum of atomic mass of all atoms present in a molecule."

- The unit for atomic mass was also amu as the values are only summed up.
- Later the unit amu was replaced by unified mass 'u' to eliminate terms atom or molecule hereby providing a unit that is same for representing and calculating mass of atoms and molecules.

Calculating Molecular Mass

For example the molecular formula for sulphuric acid is $\mathrm{H}_{2} \mathrm{SO}_{4}$. The molecular mass for molecule will be:
Molecular mass $=(2 \times$ mass of $H)+(1 \times$ mass of sulphur) + (4 \times mass of 0)

$$
\begin{aligned}
& =(2 \times 1)+(1 \times 32)+(4 \times 16) \\
& =2+32+64 \\
& =98 \mathrm{u}
\end{aligned}
$$

Molecule

- A molecule is a group of two or more atoms that are chemically bonded together.
- Mono-atomic: When a molecule is formed by single atom only, it is called mono-atomic molecule. Generally noble gases form mono-atomic molecules. For example: Helium (He), Neon (Ne),
- Di-atomic: When a molecule is formed by the combination of two atoms it is called diatomic molecule. For example: Hydrogen $\left(\mathrm{H}_{2}\right)$, Oxygen $\left(\mathrm{O}_{2}\right)$, Nitrogen $\left(\mathrm{N}_{2}\right)$, Chlorine $\left(\mathrm{Cl}_{2}\right)$, etc.
- Tri-atomic: When molecule is formed by the combination of three atoms it is called tri-atomic molecule. For example: molecule of ozone $\left(\mathrm{O}_{3}\right)$

Molecule

- Tetra-atomic:- When molecule is formed by the combination of four atoms it is called tetra-atomic molecule. For example: Phosphorous molecule (P_{4})
- Polyatomic:- When molecule is formed by the combination of more than two atoms, it is called polyatomic molecule. For example: Sulphur molecule (S8)
"Atomicity is defined as the number of atoms present in the molecule of an element."
Thus we can say that
\checkmark All metals are mono-atomic i.e. atomicity $=1$.
\checkmark Gases are generally di-atomic i.e. atomicity $=2$.
\checkmark Atomicity can vary with number of atoms in a molecule e.g. for $\mathrm{O}_{2} \& \mathrm{O}_{3}$ atomicity are 2 \& 3 resp.

Molecule

H H

H_{2} hydrogen

Cl_{2} chlorine

$$
\stackrel{\mathrm{O}_{2}}{\text { oxygen }}
$$

NO_{2} nitrogen dioxide

NO
nitrogen oxide

$\mathrm{H}_{2} \mathrm{O}$
water
$\mathrm{H}_{2} \mathrm{O}$
water

CO_{2} carbon dioxide

Chemical Formulae

- The chemical formula of a compound is a symbolic representation of its molecular composition.
e.g.: H2O (Water), CaO (Calcium Oxide), NH_{3} (Ammonia) , $\mathrm{K}_{2} \mathrm{SO}_{4}$ (Potassium sulphate) etc.

Writing Chemical Formulae

i) Write the symbols / formula of the elements or ions so that the symbol of the metal or positive ion is on the left and symbol / formula of the non metal or negative ion is on the right. ii) Write the valencies of the elements or ions below the elements or ions.
iii) Cross over the valencies of the combining ions.
iv) Polyatomic ions should be enclosed in bracket before writing the formula.

Examples:- v

i) Formula of hydrogen chloride sulphide
Symbol H
Valenčy 7

Cl

1
ii)-Formula of hydrogen

Symbol H S

- Valency 1

2
Formula $\mathrm{H}_{2} \mathrm{~S}$
iii) Formula of Magnesium chloride iv) Formula of Carbon tetrachloride

Symbol	Mg	Cl	Symbol	C	Cl
Valency	2	1	Valency	4	1

Chemical Formulae

v) Formula of Calcium oxide oxide

Valency 2
2

Formula $\mathrm{Ca}_{2} \mathrm{O}_{2}=\mathrm{CaO}$
vii) Formula of Sodium nitrate hydroxide

Symbol/ $\mathrm{Na} \quad \mathrm{NO}_{3}$

Valency , 1 1
Formula- NaNO_{3}
ix) Formula of Sodium carbonate sulphate
vi) Formula of Aluminium

0

Valency 3

- Formula $\mathrm{Al}_{2} \mathrm{O}_{3}$
viii) Formula of Calcium

Symbol/ Ca OH

- rValency 2
$\mathrm{Ca}(\mathrm{OH})_{2}$
x) Formula of Ammonium
$\begin{array}{llllll}\text { Symbol/ } & \mathrm{Na} & \mathrm{CO}_{3} & \text { Symbol/ } & \mathrm{NH}_{4} & \mathrm{SO}_{4}\end{array}$

Ions

- Particles carrying positive or negative charges are called ions.
Types of ions:

1. Cations: Positively charged ions E.g.: $\mathrm{Al}^{3+}, \mathrm{Ca}^{2+}$
2. Anions: Negatively charged ions E.g.: $\mathrm{Cl}^{-}, \mathrm{Br}-$

All metals form cations by loosing electrons. All non-metals form anions by gaining electrons. Compounds made up of ions are called ionic compounds. They do not form a molecule thus don't have a molecular forrmula instead they are represented by a relative formula e.g. for

sodium chloride crystal it is NaCl .

Valency

"Valency can be defined as the combining capacity of an atom."

The valency for an atom can vary from one molecule to another depending upon the pattern in which atoms are bonded within molecule.

In simpler terms it can also be defined as the number of chemical bonds formed by an atom within a molecule.

In ionic compounds charge is used instead of valency.

Writing the chemical formulae

Balancing is done to balance the valencies or charges on the ion as molecule/ crystal must be electrically neutral.

* When a compound consists of a metal and a non-metal, the name or symbol of the metal is written first. For example: calcium oxide (GaO), sodium chloride (NaCl), iron sulphide (FeS), copper oxide (CuO) etc., where oxygen, chlorine, sulphur are non-metals and are written on the right, whereas calcium, sodium, iron and copper are metals, and are written on the left.
Polyatomic ion is enclosed in a bracket if more then one are present in molecule.
* The number of atom or ion is written after symbol of atom $\& t$ outside bracket for a polyatomic ion.
Number of atom/ ion are always written in subscript
$\left(\lambda_{\text {subseript }}\right)$

Writing the chemical formulae

Chemical formula \& name of some molecular or ionic compounds are:

Sodium Chloride NaCl
Calcium Sulphate CaSO_{4}
Ammonium Phosphate $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
Iron Chloride FeCl_{2}
Manganese carbonate MnCO_{3}
Magnesium acetate $\quad \mathrm{Mg}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$
Aluminum fluoride AlF_{3}
Potassium hydroxide KOH
hydrogerdionsíde fibl

Mole Concept

- One mole of any entity is equal to number of atoms present in 12 g of carbon-12 isotope.
- 1 mole (of anything) $=6.022 \times 10^{23}$ in number
- This figure (1 mole) was named as Avogadro's number after the name of an Italian scientist Amedeo Avogadro.
- It is denoted by \mathbf{A}_{o} or \mathbf{N}_{A}.
- Mass of 1 mole of a particular substance is always fixed.
- One mole of an atom or molecule have mass numerically equal to atomic or molecular mass respectively.

Mole Concept: Formulae

- In mole concept following values are related as: Mass of atom = Molar mass $/ \mathrm{N}_{\mathrm{A}}$ OR
$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}=$ Molar mass/ Mass of atom Number of moles(N) = Given mass (m)/ Molar mass (M)
Number of particles $=$ Number of moles (N) $\times N_{A}$

$$
=\text { Given mass }(\mathrm{m}) \times \mathrm{N}_{A}
$$

Molar mass (M)

Numerical Problem-4 Calculating number of moles

Q. Calculate the number of moles present in
(a) 9 g of $\mathrm{H}_{2} \mathrm{O}$
(b) 3.3 g of CO_{2}
(c) 6.8 g of ammonia
(d) 15 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (e) 2.53 g of HNO_{3}

Ans: (a) $\mathrm{n}=\mathrm{w} / \mathrm{M}=\mathbf{9 g} / 18 \mathrm{~g}=0.5$ moles
(b) $n=w / M=3.3 \mathrm{~g} / 44 \mathrm{~g}=0.075$ moles
(c) $\mathrm{n}=\mathrm{w} / \mathrm{M}=6.8 \mathrm{~g} / 34 \mathrm{~g}=0.2$ moles

Numerical Problem-5

Q. Calculate the number of atoms \& molecules present in 7 g of dinitrogen $\left(\mathrm{N}_{2}\right)$.
Ans: molar mass of $\mathrm{N}_{2}=2 \times 14=28 \mathrm{~g}$ Number of N_{2} molecules $=\underline{\text { Given mass }(m) \times N_{A}}$ Molar mass (M)
$=\underline{\mathrm{g} \times 6.022 \times 10^{23}}$
28g
$=1.55 \times 10^{23}$
As each molecule contain two atoms
Number of N atoms $=$ Number of N_{2} molecules $\times 2$
$=1.55 \times 10^{23} \times 2=3.01 \times 10^{23}$

Numerical Problem-6

Q. Which on has more number of atoms 100 g of Ca or 100 g of AI.
Ans: molar mass of $\mathrm{Ca}=40 \mathrm{~g}$ molar mass of AI
$=27 \mathrm{~g}$
Number of moles in $100 \mathrm{~g} \mathrm{Ca}=$

$$
\begin{aligned}
n_{1} & =\text { Given mass }(m) / \text { Molar mass }(M) \\
& =100 / 40=2.5 \text { moles }
\end{aligned}
$$

Number of moles in 100 g Al

$$
\begin{aligned}
n_{2} & =\text { Given mass }(m) / \text { Molar mass }(M) \\
& =100 / 27=3.70 \text { moles }
\end{aligned}
$$

$\mathrm{n}_{1}<\mathrm{n}_{2}$ so 100 g Al has more number of particles.

